
ROBOTC

Timers • 1© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Radio

In this lesson, you will learn how Timers differ from simple wait1Msec commands,
and how ROBOTC handles them.

The rules for the game state that you have only two minutes from the starting signal to control
your robot, and then your robot must stop responding to commands or face disqualification.
Your program does not currently enforce this rule, and so your robot is not yet tournament
legal! Let’s fix that.

At first glance, it seems that since we already know how to use the wait1Msec(time);
command to make the robot go straight or turn for a certain amount of time, we should be
able to follow the same pattern to make the robot do any other behavior for a length of time.

But, try as we might, we can’t seem to find the right place to put the command that will make
it work! Below is the Radio Control code from the end of the Control Mapping chapter. For
simplicity, it is shown without any scaling on the remote control commands (which is usuallly
customized based on driver preference).

1
2
3
4
5
6
7
8
9

10
11
12

task main()
{

		 bIfiAutonomousMode = false;
		 bMotorReflected[port2] = 1;		

		 while(1 == 1)
		 {
			 motor[port3] = vexRT[Ch3];
			 motor[port2] = vexRT[Ch2];
		 }
}

Location A
Putting the wait1Msec command
here just makes the robot wait a few
seconds before letting the remote
control behavior start (it still runs
forever after that).

Location B
Since the (condition) controls how
long the loop runs, this seems like it
might be a good place, but putting a
wait1Msec command here confuses
the compiler and causes an error.

Location C
This makes the code look like
the familiar forward and turning
commands. However, putting
the wait1Msec here causes
the robot to lock in single power
commands for your set amount
of time, rather than making the
behavior itself run for that long.

Location D
Clever, but since the while()
loop above is infinite, the program
won’t ever reach this code.

Timers Time and Timers

ROBOTC

Timers • 2© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Radio

There is no right place to put a wait1Msec command to get the robot to perform a complex
behavior for any amount of time. wait1Msec does not mean “continue the last behavior for
this many milliseconds.” Rather, it means, “go to sleep for this many milliseconds.”

Timers Time and Timers (cont.)

In the Moving Forward example above, you’ve really told the robot to put its foot on the
gas pedal, go to sleep, and hit the brakes when it wakes up again. That works in the case of
just moving forward, but it doesn’t work when the robot needs to listen and respond to radio
commands during that time. Instead of sleeping, we’ll keep the robot awake and attentive,
using a Timer (rather than just Time) to decide when to stop.

Your robot is equipped with four Timers, T1 through T4, which you can think of as Time
Sensors, or if you prefer, programmable stopwatches.

Using the Timers is pretty straightforward: you reset a timer with the ClearTimer()
command, and it immediately starts counting time.

Then, when you want to find out how long it’s been since then, you just use the
time1[TimerName] command. It gives you the value of the timer in the same way that the
vexRT[ChannelNumber] command gives you the value of a joystick or button input. The
time1[TimerName] command gives you the amount of time since the last reset, in milliseconds.

		 ClearTimer(TimerName);

		 while(time1[TimerName] < 5000) 	
		 ...

Reminder
Timers should be reset when you are ready to start counting.

time1[TimerName] represents the timer value in milliseconds since
the last reset. It is shown here being used to make a while loop run
until 5 seconds have elapsed.

Example from Sample Programs > Moving Forward:

task main()
{
		 bMotorReflected[port2]= 1;
		 motor[port3] = 127;
		 motor[port2] = 127;
		 wait1Msec(1000);
}

Time (not Timer) behavior
Turns on both motors, then goes to sleep for
1 second with the motors still running. The
robot will blindly move forward for 1 second.

This method can not be extended to work for
behaviors where the robot has to run other
commands during the waiting period.

ROBOTC

Timers • 3© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Radio

Timers Time and Timers (cont.)

The Timer function has limitations. The default time1[TimerName] can only count to around
30 seconds (see description below). Since we need to count to 2 minutes, we will need to
use the time10[TimerName] version instead. Keep this in mind as we move on to the next
lesson, where you will use the Timer to control the length of the radio controlled behavior.

Timer Read Command Units Maximum
Length of time

Example

time1[TimerName] milliseconds (ms) =
1/1000ths of a second

32767ms ≈
32.8 seconds

30000 = 30
seconds

time10[TimerName] centiseconds (cs) =
1/100ths of a second

32767cs
≈ 328 seconds
≈5 ½ minutes

12000
= 120 seconds

= 2 minutes

time100[TimerName] deciseconds (ds) =
1/10ths of a second

32767ds
≈ 3277 seconds
≈54 ½ minutes

18000
= 1800 seconds

= 30 minutes

Why time1 can only count to 30 seconds:

No Timer value can be read if the number value it would produce is more than about
30000 (specifically, 32767 or 215-1). This is because 32767 is the largest number ROBOTC
can fit in a standard integer variable. Other larger variable types do exist, but they require
special handling.

Since the default time1[TimerName] command reads in milliseconds, this poses a
problem for us. Two minutes is 120 seconds, or 120,000 milliseconds. 120,000 is greater
than 32767 and therefore cannot be expressed using the time1 command. The time10
command must be used instead.

Helpful Hints

ROBOTC

Timers • 4© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Radio

In this lesson, you will set up and use a Timer to limit the amount of time your robot
remains in Radio Control mode, as required by the game rules.

Timers Using Timers

1.	Open the RadioControl program.

1a.	 Open the program
Choose File > Open.

1b.	 Select the RadioControl program
Find RadioControl in the directory
where you normally save your
programs and double-click to open it
(or select it and click Open).

2.	 Save this program under a new name so we can make modifications to it without disturbing
the original.

2a.	 Save the program under a
new name
Choose File > Save As

2b.	 Save As “TimedRemote”
Save your program in the
usual folder, with the name
TimedRemote.

ROBOTC

Timers • 5© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Radio

Checkpoint

The current program allows you to control your robot using the remote control as long as the
robot remains powered on. In order to be tournament legal, however, the robot must stop
responding to commands no more than two minutes after the starting signal.

Timers Using Timers (cont.)

In the program as written, the robot continues updating motor powers forever because the
while() loop repeats the motor commands over and over forever. If the loop were to only repeat
those commands for a certain amount of time, then motor control would cease after the time had
elapsed (and the motor commands were no longer being run by the loop).

while(1 == 1)

While loops will repeat as long as their (condition)s remain true. While (1==1) literally means
“while 1 is equal to 1 is true”. Of course 1 is always equal to 1! Whatever is being controlled by
this statement will loop forever. Therefore, the loop repeats forever. To make the loop only repeat
for a certain amount of time, we need to change the (condition) to only be true while the elapsed
time is less than the desired time.

Helpful Hints

For additional information and review, see the reference pages for Boolean Logic and
while Loops.

while(time10[T1] < 500)

This while() loop will continue looping while (as long as) the time value in Timer T1 remains
less than 500 hundredths of a second, or 5 seconds.

Let’s start by implementing a short-duration test program designed to disable radio control after
5 seconds (using the (condition) shown above). Once we have the program working with
a 5-second cutoff, we’ll change it up to the tournament regulation 2 minutes.

ROBOTC

Timers • 6© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Radio

Timers Using Timers (cont.)

3.	 Timers should always be reset before use. They begin counting immediately after they are
reset. Add the ClearTimer(); command just before the robot enters the Radio Control
while() loop.

1
2
3
4
5
6
7
8
9

10
11
12
13

task main()
{

		 bIfiAutonomousMode = false;
		 bMotorReflected[port2] = 1;
		
		 ClearTimer(T1);
		 while(1 == 1)
		 {
			 motor[port3] = vexRT[Ch3];
			 motor[port2] = vexRT[Ch2];
		 }
}

3.		 Add this code
Clear the timer T1 so that it starts
counting from the beginning of the
radio control period.

4.	Change the (condition) of the while() loop to check the Timer. The while() loop should
run while the Timer value is still below (less than, <) 5 seconds.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

task main()
{

		 bIfiAutonomousMode = false;
		 bMotorReflected[port2] = 1;
		
		 ClearTimer(T1);
		 while(time10[T1] < 500)
		 {
			 motor[port3] = vexRT[Ch3];
			 motor[port2] = vexRT[Ch2];
		 }
		
		 motor[port3] = 0;
		 motor[port2] = 0;
}

4a.	 Modify this code
Replace the “infinite” (1==1)
condition with the more
appropriate “while” condition
(time10[T1] < 500). This
allows the while() loop to
continue repeating as long as
the accumulated time in T1 is
less than 500 hundredths of a
second (5 seconds).

4b.	 Add this code
Manually ensure that the
robot comes to a stop after
the loop ends.

ROBOTC

Timers • 7© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Radio

Timers Using Timers (cont.)

5. Save and download your program.

5a.	 Save your program
Select File > Save.

5b.	 Compile and Download
Make sure your robot is turned on and
plugged in with the USB cable. Choose
Robot > Compile and Download to
download your program to the robot.

6.	 Run and test the program.

6a.	 Run the program
Turn the robot off,
then back on.

6b.	 Drive the robot
Drive around using the Transmitter,
and use a stopwatch to see how long
you remain in control of the robot.
What happened after five seconds?

Checkpoint

Your Transmitter should work to control the robot for exactly 5 seconds, and then stop.

ROBOTC

Timers • 8© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Radio

Timers Using Timers (cont.)

7.	 Finally, change your program to use the actual two-minute time limit instead.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

task main()
{

		 bIfiAutonomousMode = false;
		 bMotorReflected[port2] = 1;
		
		 ClearTimer(T1);
		 while(time10[T1] < 12000)
		 {
			 motor[port3] = vexRT[Ch3];
			 motor[port2] = vexRT[Ch2];
		 }
		
		 motor[port3] = 0;
		 motor[port2] = 0;
}

7a.	 Modify this code
Change the 500-hundredths (5 second)
cutoff to 12,000 hundredths of a second
(2 minutes).

7b.	 Download, run and test
The robot should now be
controllable for two minutes starting
at the beginning of the program. It
should then automatically disable
operator control.

ROBOTC

Timers • 9© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Radio

Timers Using Timers (cont.)

8.	 There is still a place for the wait1Msec command in our program, at least for now.
Use the wait1Msec command to insert a 2-second pause for the human operator
to move his or her hand clear of the robot at the beginning of the program, just as
we did in the Labyrinth.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

task main()
{
		 wait1Msec(2000);
		 bIfiAutonomousMode = false;
		 bMotorReflected[port2] = 1;
		
		 ClearTimer(T1);
		 while(time10[T1] < 12000)
		 {
			 motor[port3] = vexRT[Ch3];
			 motor[port2] = vexRT[Ch2];
		 }
		
		 motor[port3] = 0;
		 motor[port2] = 0;
}

	8.	 Add this code
Add a 2-second pause at the beginning
of the program. This gives the human
operator time to move out of the robot’s
way after turning it on.

This also helps to avoid the touching
penalty for accidentally having a hand on
the robot after the start-of-round signal.

End of Section

Your robot is now compliant with the challenge time limit rules! The next step is to build and
program controls for an actuator to allow your robot to pick up the mines.

